Affiliation:
1. Department of Physics, Federal University of Technology, Akure 340110, Ondo State, Nigeria
2. Faculty of Environmental and Urban Change, York University, Toronto, ON M3J 1P3, Canada
3. Doctoral Research Program, West African Climate System (DRP-WACS), West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL), Federal University of Technology Akure, Ilesha-Owo Expressway, Akure 340001, Ondo State, Nigeria
Abstract
Across West Africa, the River Niger is a major source of freshwater. In addition, the river system also provides services such as aquaculture, transportation, and hydropower. The river network plays a critical role in the hydropolitics and hydroeconomics of the region. Therefore, River Niger is integral to the development of West Africa, hence, there is a need to ensure that the river’s ecosystem is a healthy one. In light of the changing climate and its associated threats such as droughts and floods, constant monitoring and measurements of the the river’s flow system cannot be overemphasized. This study investigates temporal variations in annual river discharge characteristics at eight stations (Koulikoro, Dioila, Kirango, Douna, Mopti, Dire, Ansongo, and Niamey) in the Niger River basin, presenting detailed quantitative findings. Analyzing discharge data of River Niger from 1950 to 1990, the minimum discharge measures (minimum and 10th percentile) exhibit a consistent decreasing trend post-1960, persisting into the 1990s at several stations. Central tendency measures (mean and 50th percentile) also consistently reduced since 1950, with near-zero median values observed in Diola and Douna. Recovery in mean discharge is evident in Ansongo after 1980. Extreme values (maximum and 90th percentile) show decreasing trends across all stations, with some locations exhibiting a slight recovery after 1980. The decreasing trend in annual minimum, mean, and maximum values has implications for water resources, affecting hydroelectric generation, fish farming, and dry season irrigation. Machine learning algorithms (MLAs) are deployed to predict the prediction of monthly river discharge, with LSTM identified as the best-performing model overall. However, model performance varies across locations, with TCN excelling in Diola but underperforming in Koulikoro. This study emphasizes the chaotic nature of time series data and external drivers limiting the long-term predictive capabilities of MLAs. Quantitative evaluation of MLA performance reveals specific strengths and weaknesses at each station. This study underscores the importance of predicting the 10th percentile of annual river discharge for water resource planning. Models exhibit diverse performance across basins, emphasizing the need for tailored approaches. Further analysis considers measures of central tendencies, predicting the 50th percentile (Q50) and mean discharge values. TCN emerges as the best model for Q50 prediction, showcasing superior performance over other models. Additionally, the study delves into predicting high and low extreme discharges, crucial for understanding potential flood events and preparing for meteorological and hydrological droughts. This study concludes by emphasizing the necessity for location-specific studies in the River Niger basin to facilitate an enhanced integrated river management system.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference64 articles.
1. Limburg, K., Swaney, D., and Strayer, D. (2001). Reference Module in Life Sciences, Elsevier.
2. Potential of using floating solar photovoltaic and wind farms for sustainable energy generation in an existing hydropower station in Nigeria;Ogunjo;Clean Technol. Environ. Policy,2023
3. Relationships between precipitation and surface temperature;Trenberth;Geophys. Res. Lett.,2005
4. Is climate change implicated in the 2013–2014 California drought? A hydrologic perspective;Mao;Geophys. Res. Lett.,2015
5. Analysis of climate extreme indices over the Komadugu-Yobe basin, Lake Chad region: Past and future occurrences;Adeyeri;Weather Clim. Extrem.,2019