Buried Pipeline Collapse Dynamic Evolution Processes and Their Settlement Prediction Based on PSO-LSTM

Author:

Zhou Yadong1ORCID,Teng Zhenchao12,Chi Linlin1,Liu Xiaoyan1

Affiliation:

1. School of Civil Engineering, Northeast Petroleum University Daqing, Daqing 163318, China

2. Heilongjiang Key Laboratory of Disaster Prevention, Mitigation and Protection Engineering, Northeast Petroleum University, Daqing 163319, China

Abstract

Based on the unit life and death technology, the dynamic evolution process of soil loss is considered, and a pipe-soil nonlinear coupling model of buried pipelines passing through the collapse area is constructed. The analysis shows that after the third layer of soil is lost, the existence of the “pipe-soil separation” phenomenon can be confirmed, which then supplements the assumption that “pipe-soil is always in contact” in the elastic foundation beam theory. Calculation of settlement deformation of buried pipelines It needs to be divided into two stages: cooperative deformation and non-cooperative deformation. Taking the settlement prediction of buried pipelines as the goal, the particle swarm algorithm (PSO) was used to optimize the number of neurons, Dropout, and Batch-size in the long short-term memory network (LSTM) structure. The optimization results were 60, 0.001, and 100, respectively. The PSO-LSTM model proposed in this article can accurately describe the dynamic evolution process of buried pipelines and has better prediction accuracy than the modified Gaussian curve method and LSTM neural network model. The use of this model can provide a reference for safety risk management, disaster early warning, and intelligent monitoring when buried pipelines suffer from soil collapse disasters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3