Leveraging Real-World Data from IoT Devices in a Fog–Cloud Architecture for Resource Optimisation within a Smart Building

Author:

Lawal Kelvin N.1,Olaniyi Titus K.1,Gibson Ryan M.2

Affiliation:

1. The School of Computing, Engineering and Build Environment (SCEBE), Glasgow Caledonian University, London E1 6PX, UK

2. The School of Computing, Engineering and Build Environment (SCEBE), Glasgow Caledonian University, Glasgow G4 0BA, UK

Abstract

It is estimated that over 125 billion heterogeneous and homogeneous Internet of Things (IoT) devices will be internet-connected by 2030. This significant increase will generate large data volumes, posing a global problem for Cloud–Fog computing infrastructures. The current literature uses synthetic data in the iFogSim2 simulation toolkit; however, this study bridges the gap using real-world data to reflect and address the real-world issue. Smart IoT device data are captured, compared, and evaluated in a fixed and scalable scenario at both the Cloud and Fog layers, demonstrating the improved benefits achievable in energy consumption, latency, and network bandwidth usage within a smart office building. Real-world IoT device data evaluation results demonstrate that Fog computing is more efficient than Cloud computing, with increased scalability and data volume in a fixed- and low-bandwidth smart building architecture. This indicates a direct correlation between the increase in devices and the increase in efficiency within a scalable scenario, while the fixed architecture overall shows the inverse due to the low device numbers used in this study. The results indicate improved energy savings and significant improvements of up to 84.41% and 38.95% in network latency and usage, respectively, within a fixed architecture, while scalability analysis demonstrates improvements up to 4%, 91.38% and 34.78% for energy, latency, and network usage, respectively. Fog computing improvements are limited within a fixed smart building architecture with relatively few IoT devices. However, the benefits of Fog computing are significant in a scalable scenario with many IoT devices.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3