Aerodynamic Performance Assessment of Distributed Electric Propulsion after the Wing Trailing Edge

Author:

Lei Yao12ORCID,Zhao Xiangzheng1

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China

2. Key Laboratory of Fluid Power and Intelligent Electro-Hydraulic Control, Fuzhou University, Fuzhou 350116, China

Abstract

Distributed electric propulsion (DEP) with four propellers distributed along the rear edge of the wing (pusher DEP configuration) promote aerodynamic interactions to a higher level. To study the aerodynamic performance of DEP with the rear wing through simulations and experiments, the multi-reference frame (MRF) with sliding grid is combined with wind tunnel tests. The obtained results demonstrate that the lift and drag of DEP increase with the angle of attack (AoA) and are related to the relative position of the propellers and wing. The propeller has no significant effect on the lift of the wing, and the lift and the AoA remain linear when the AoA is less than 16°. By contrast, the lift coefficient is much higher than the baseline (isolated wing), and the lift is greatly improved with the increasing drag when the AoA is greater than 16°. This is because the flow around the wing of the pusher configuration remains attached due to the suction of the inflow of the propeller on the trailing edge vortex. In addition, the acceleration effect on the free flow improves the kinetic energy of the airflow, which effectively delays the separation of the airflow in the slipstream region.

Funder

National Natural Science Foundation of China

Fujian Provincial Industrial Robot Basic Components Technology Research and Development Center

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3