Towards Optimizing Multi-Level Selective Maintenance via Machine Learning Predictive Models

Author:

Achour Amal1,Kammoun Mohamed Ali1ORCID,Hajej Zied1ORCID

Affiliation:

1. LGIPM, Lorraine University, 57073 Metz, France

Abstract

The maintenance strategies commonly employed in industrial settings primarily rely on theoretical models that often overlook the actual operating conditions. To address this limitation, the present paper introduces a novel selective predictive maintenance approach based on a machine learning model for a multi-parallel series system, which involves executing multiple missions with breaks between them. For this purpose, the proposed selective maintenance approach consists of finding, at each breakdown, the optimal structure of maintenance activities that provide the desired reliability level of the system for each mission. This decision is based on a component’s actual age, as determined by the prediction model. In addition, an optimization model with the Extended Great Deluge (EGD) algorithm uses these predictions as input data to identify the best maintenance level for each component considering the constrained maintenance resources. Finally, the numerical results of the proposed idea applied to the Flexible Manufacturing System (FMS) data are presented to show the robustness of the model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3