Early Prediction of Remaining Useful Life for Rolling Bearings Based on Envelope Spectral Indicator and Bayesian Filter

Author:

Wen Haobin1,Zhang Long2ORCID,Sinha Jyoti K.1ORCID

Affiliation:

1. Dynamics Lab, School of Engineering, The University of Manchester, Manchester M13 9PL, UK

2. The Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK

Abstract

On top of the condition-based maintenance (CBM) practice for rotating machinery, the robust estimation of remaining useful life (RUL) for rolling-element bearings (REB) is of particular interest. The failure of a single bearing often results in secondary defects in the connected structure and catastrophic system failures. The prediction of RUL facilitates proactive maintenance planning to ensure system reliability and minimize financial loss due to unscheduled downtime. In this paper, to acquire early and reliable estimations of useful life, the RUL prediction of REBs is formulated into nonlinear degradation state estimation tackled by the combination of the envelope spectral indicator (ESI) and extended Kalman filter (EKF). By fusing the spectral energy of the bearing fault characteristic frequencies (FCFs) in the averaged envelope spectrum, the ESI is crafted to remove the interference from rotor-dynamics and reveal the bearing deterioration process. Once the fault is identified, the recursive Bayesian method based on EKF is utilized for estimating the bearing end-of-life time via the exponential state-space model. The distinctive advantage of the proposed approach lies in its ability to make an early prediction of RUL using a small number of ESI observations, offering an efficient practice for predictive health management at the early stage of bearing fault. The performance of the proposed method is validated using publicly available experimental bearing vibration data across three different operating conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3