ZWNet: A Deep-Learning-Powered Zero-Watermarking Scheme with High Robustness and Discriminability for Images

Author:

Li Can1,Sun Hua23,Wang Changhong23,Chen Sheng23,Liu Xi23,Zhang Yi23,Ren Na45,Tong Deyu1ORCID

Affiliation:

1. College of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China

2. Hunan Engineering Research Center of Geographic Information Security and Application, Changsha 410007, China

3. The Third Surveying and Mapping Institute of Hunan Province, Changsha 410018, China

4. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

5. Nanjing Geomarking Information Technology Co., Ltd., Nanjing 210023, China

Abstract

In order to safeguard image copyrights, zero-watermarking technology extracts robust features and generates watermarks without altering the original image. Traditional zero-watermarking methods rely on handcrafted feature descriptors to enhance their performance. With the advancement of deep learning, this paper introduces “ZWNet”, an end-to-end zero-watermarking scheme that obviates the necessity for specialized knowledge in image features and is exclusively composed of artificial neural networks. The architecture of ZWNet synergistically incorporates ConvNeXt and LK-PAN to augment the extraction of local features while accounting for the global context. A key aspect of ZWNet is its watermark block, as the network head part, which fulfills functions such as feature optimization, identifier output, encryption, and copyright fusion. The training strategy addresses the challenge of simultaneously enhancing robustness and discriminability by producing the same identifier for attacked images and distinct identifiers for different images. Experimental validation of ZWNet’s performance has been conducted, demonstrating its robustness with the normalized coefficient of the zero-watermark consistently exceeding 0.97 against rotation, noise, crop, and blur attacks. Regarding discriminability, the Hamming distance of the generated watermarks exceeds 88 for images with the same copyright but different content. Furthermore, the efficiency of watermark generation is affirmed, with an average processing time of 96 ms. These experimental results substantiate the superiority of the proposed scheme over existing zero-watermarking methods.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Open Topic of Hunan Engineering Research Center of Geographic Information Security and Application

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3