Name Disambiguation Scheme Based on Heterogeneous Academic Sites

Author:

Choi Dojin1ORCID,Jang Junhyeok2,Song Sangho2ORCID,Lee Hyeonbyeong2ORCID,Lim Jongtae2ORCID,Bok Kyoungsoo3ORCID,Yoo Jaesoo2ORCID

Affiliation:

1. Department of Computer Engineering, Changwon National University, Changwondaehak-ro 20, Uichang-gu, Changwon-si 51140, Gyeongsangnam-do, Republic of Korea

2. Department of Information and Communication Engineering, Chungbuk National University, Chung-dae-ro 1, Seowon-gu, Cheongju 28644, Chungcheongbuk-do, Republic of Korea

3. Department of Artificial Intelligence Convergence, Wonkwang University, Iksandae 460, Iksan 54538, Jeollabuk-do, Republic of Korea

Abstract

Academic researchers publish their work in various formats, such as papers, patents, and research reports, on different academic sites. When searching for a particular researcher’s work, it can be challenging to pinpoint the right individual, especially when there are multiple researchers with the same name. In order to handle this issue, we propose a name disambiguation scheme for researchers with the same name based on heterogeneous academic sites. The proposed scheme collects and integrates research results from these varied academic sites, focusing on attributes crucial for disambiguation. It then employs clustering techniques to identify individuals who share the same name. Additionally, we implement the proposed rule-based algorithm name disambiguation method and the existing deep learning-based identification method. This approach allows for the selection of the most accurate disambiguation scheme, taking into account the metadata available in the academic sites, using a multi-classifier approach. We consider various researchers’ achievements and metadata of articles registered in various academic search sites. The proposed scheme showed an exceptionally high F1-measure value of 0.99. In this paper, we propose a multi-classifier that executes the most appropriate disambiguation scheme depending on the inputted metadata. The proposed multi-classifier shows the high F1-measure value of 0.67.

Funder

National Research Foundation of Korea

Institute for Information and Communications Technology Planning and Evaluation

Ministry of SMEs and Startups

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3