Recommendation Algorithm Based on Heterogeneous Information Network and Attention Mechanism

Author:

Li Li12ORCID,Gui Xiangquan1ORCID,Lv Rui3

Affiliation:

1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China

2. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China

3. Department of Management, Lanzhou Institute of Technology, Lanzhou 730050, China

Abstract

Heterogeneous information networks (HINs) contain a rich network structure and semantic information, which makes them commonly used in recommendation systems. However, most of the existing HIN-based recommendation systems rely on meta-paths for information extraction, lack meta-path information supplements, and rarely learn complex structure information in heterogeneous graphs. To address these issues, we develop a novel recommendation algorithm that integrates the attention mechanism, meta-paths, and neighbor node information (AMNRec). In the heterogeneous information network, the missing information of the meta-path is supplemented by extracting the information of users and items’ neighbor nodes. The rich interactions between nodes are captured through convolution, and the embedded representation of nodes and meta-paths is obtained through the attention mechanism. TOP-N recommendation is completed by combining users, items, neighbor nodes, and meta-paths. Experiments on three public datasets show that AMNRec not only has the best recommendation performance but also has good interpretability of the recommendation results compared with the six recommendation benchmark algorithms.

Funder

Key Research and Development Program of Gansu Province

Soft Science Special Project of Gansu Basic Research Plan

Industry Support Program of Gansu Provincial Department of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3