Affiliation:
1. College of Naval Architecture and Ocean Engineering, Dalian Maritime University, Dalian 116026, China
2. Petrochemical Inspection and Maintenance Department, China Special Equipment Inspection and Research Institute, Beijing 100020, China
Abstract
The harsh working environment of hydrogen refueling stations often causes equipment failure and is vulnerable to mechanical noise during monitoring. This limits the accuracy of equipment monitoring, ultimately decreasing efficiency. To address this issue, this paper presents a motor bearing vibration signal diagnosis method that employs a Bayesian optimization (BOA) residual neural network (ResNet). The industrial noise signal of the hydrogenation station is simulated and then combined with the motor bearing signal. The resulting one-dimensional bearing signal is processed and transformed into a two-dimensional signal using Fast Fourier Transform (FFT). Afterwards, the signal is segmented using the sliding window translation method to enhance the data volume. After comparing signal feature extraction and classification results from various convolutional neural network models, ResNet18 yields the best classification accuracy, achieving a training accuracy of 89.50% with the shortest computation time. Afterwards, the hyperparameters of ResNet18 such as InitialLearnRate, Momentum, and L2Regularization Parameter are optimized using the Bayesian optimization algorithm. The experiment findings demonstrate a diagnostic accuracy of 99.31% for the original signal model, while the accuracy for the bearing signal, with simulated industrial noise from the hydrogenation station, can reach over 92%.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献