A Sound Velocity Profile Stratification Method Based on Maximum Density and Maximum Distance Clustering

Author:

Li Jian12ORCID,Pan Yue1,Li Rong1,Zhu Tianlong1,Zhang Zhen1,Gu Mingyu1,Han Guangjie1ORCID

Affiliation:

1. College of Information Science and Engineering, Hohai University, Changzhou 213002, China

2. Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin 150001, China

Abstract

In the field of deep-sea positioning, this paper aims to enhance accuracy and computational efficiency in positioning calculations. We propose an improved method based on layered clustering of sound velocity profiles, where the profiles are stratified according to maximum distance and maximum density. Subsequently, a secondary curve fitting is applied to the stratified data. Ultimately, the underwater positioning is conducted using the sound velocity profiles’ post-layered fitting. We compare our approach with traditional methods such as k-means clustering, layered clustering, and gradient-based stratification. Experimental results demonstrate that, in the application scenario of a USBL system with a transducer tilted at 30°, and under the premise of autonomously controlling the number of layers, our method significantly improves positioning accuracy.

Funder

National key R&D Program

NSF of China

Science and Technology on Underwater Vehicle Technology Laboratory

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3