Data-Driven Approach for Defining Demand Scenarios for Shared Autonomous Cargo Bike Fleets

Author:

Kania Malte1ORCID,Mukku Vasu Dev1ORCID,Kastner Karen2,Assmann Tom1

Affiliation:

1. Institute of Logistics and Material Handling Systems, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

2. Institute of Psychology, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

Abstract

Bike sharing systems have become a sustainable alternative to motorized private transport in urban areas. However, users often face high costs and availability issues due to the operational effort required to redistribute bicycles between stations. For addressing those issues, the AuRa (Autonomes Rad, Eng. Autonomous Bicycle) project introduces a new mobility offer in terms of an on-demand, shared-use, self-driving cargo bikes service (OSABS) that enables automated redistribution. Within the project, we develop different order management and rebalancing strategies and validate them using simulation models. One prerequisite for this is sound demand scenarios. However, due to the novelty of OSABS, there is currently no information about its utilization. Consequently, the objective of this study was to develop an approach for defining OSABS demand scenarios in a temporally and spatially disaggregated manner as an input for simulation models. Therefore, we first derived city-wide usage potentials of OSABS from a survey on mobility needs. We then spatially and temporally disaggregated the determined usage likelihood using travel demand matrices and usage patterns from a conventional bike-sharing system, respectively. Finally, we performed cluster analyses on the resulting annual demand to summarize sections of the yearly profile into representative units and thus reduce the simulation effort. As we applied this approach as a case study to the city of Magdeburg, Germany, we could show that our methodology enables the determination of reasonable OSABS demand scenarios from scratch. Furthermore, we were able to show that annual usage patterns of (conventional) bike sharing systems can be modeled by using demand data for only eight representative weeks.

Funder

federal state of Saxony-Anahlt, Germany

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3