A Multi-Task Learning and Multi-Branch Network for DR and DME Joint Grading

Author:

Xing Xiaoxue1,Mao Shenbo1ORCID,Yan Minghan1,Yu He1ORCID,Yuan Dongfang1,Zhu Cancan1,Zhang Cong1,Zhou Jian1,Xu Tingfa2

Affiliation:

1. College of Electronic Information Engineering, Changchun University, Changchun 130012, China

2. Image Engineering & Video Technology Lab, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

Abstract

Diabetic Retinopathy (DR) is one of the most common microvascular complications of diabetes. Diabetic Macular Edema (DME) is a concomitant symptom of DR. As the grade of lesion of DR and DME increase, the possibility of blindness can also increase significantly. In order to take the early interventions as soon as possible to reduce the likelihood of blindness, it is necessary to perform both DR and DME grading. We design a joint grading model based on multi-task learning and multi-branch networks (MaMNet) for DR and DME grading. The model mainly includes a multi-branch network (MbN), a feature fusion module, and a disease classification module. The MbN is formed by four branch structures, which can extract the low-level feature information of DME and DR in a targeted way; the feature fusion module is composed of a self-feature extraction module (SFEN), cross-feature extraction module (CFEN) and atrous spatial pyramid pooling module (ASPP). By combining various features collected from the aforementioned modules, the feature fusion module can provide more thorough discriminative features, which benefits the joint grading accuracy. The ISBI-2018-IDRiD challenge dataset is used to evaluate the performance of the proposed model. The experimental results show that based on the multi-task strategy the two grading tasks of DR and DME can provide each other with additional useful information. The joint accuracy of the model, the accuracy of DR and the accuracy of DME are 61.2%, 64.1% and 79.4% respectively.

Funder

Project of Jilin Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3