Modulation of Growth and Antioxidative Defense Mechanism in Wheat (Triticum aestivum L.) Mediated by Plant-Beneficial Strain Pseudomonas veronii MR-15 under Drought Conditions

Author:

Rehman Maryam1,Shahid Muhammad2ORCID,Mahmood Saqib1,Ali Qasim1,Azeem Muhammad1ORCID

Affiliation:

1. Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan

2. Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan

Abstract

Drought stress severely influences plants in various ways and is considered an alarming threat to sustainable crop production worldwide. However, plant-growth-promoting rhizobacteria (PGPRs) have the natural ability to tolerate drought and enable plants to induce stress resistance by altering critical metabolic pathways. In this study, we isolated and characterized a drought-tolerant rhizobacterium from the ground nut (Arachis hypogaea). Sequencing of the 16S rRNA gene traced its lineage to Pseudomonas veronii, named MR-15. The strain exhibited natural capabilities to solubilize phosphate, produce indole acetic acid, and grow a drought medium containing PEG (polyethylene glycol). The seeds of two wheat varieties (Triticum aestivum) inoculated with MR-15 were grown under drought and fully hydrated conditions and showed a significant increase in plant biomass, enhanced cellular antioxidant enzyme activity, and reduced reactive oxygen species. The MR-15 strain also significantly increased pigmentation and protein contents compared to plants raised from seeds grown without inoculation. These beneficial effects were consistent under drought stress conditions, indicating that MR-15 effectively alleviated wheat plants from drought-induced cellular oxidative damage. The findings suggest that MR-15 has the potential to serve as a biofertilizer, and further experiments should be conducted to explore its role in promoting plant growth and yield under drought conditions, particularly in semi-arid and arid zones. This is the first study reporting Pseudomonas veronii as a potential PGPR strain.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3