Method of Improving the Management of Cancer Risk Groups by Coupling a Features-Attention Mechanism to a Deep Neural Network

Author:

Onchis Darian M.1,Costi Flavia1,Istin Codruta2,Secasan Ciprian Cosmin3,Cozma Gabriel V.4

Affiliation:

1. Computer Science Department, West University of Timisoara, 300223 Timisoara, Romania

2. Department of Computer and Information Technology, Politehnica University, 300006 Timisoara, Romania

3. Urology Clinic, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania

4. Department of Surgical Semiology I and Thoracic Surgery, Thoracic Surgery Research Center (CCCTTIM), “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania

Abstract

(1) Background: Lung cancers are the most common cancers worldwide, and prostate cancers are among the second in terms of the frequency of cancers diagnosed in men. Automatic ranking of the risk groups of such diseases is highly in demand, but the clinical practice has shown us that, for a sensitive screening of the clinical parameters using an artificial intelligence system, a customarily defined deep neural network classifier is not sufficient given the usually small size of medical datasets. (2) Methods: In this paper, we propose a new management method of cancer risk groups based on a supervised neural network model that is further enhanced by using a features attention mechanism in order to boost its level of accuracy. For the analysis of each clinical parameter, we used local interpretable model-agnostic explanations, which is a post hoc model-agnostic technique that outlines feature importance. After that, we applied the feature-attention mechanism in order to obtain a higher weight after training. We tested the method on two datasets, one for binary-class in cases of thoracic cancer and one for multi-class classification in cases of urological cancer, to demonstrate the wide availability and versatility of the method. (3) Results: The accuracy levels of the models trained in this way reached values of more than 80% for both clinical tasks. (4) Conclusions: Our experiments demonstrate that, by using explainability results as feedback signals in conjunction with the attention mechanism, we were able to increase the accuracy of the base model by more than 20% on small medical datasets, reaching a critical threshold for providing recommendations based on the collected clinical parameters.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3