Machine Learning Algorithms for the Prediction of the Seismic Response of Rigid Rocking Blocks

Author:

Karampinis Ioannis1,Bantilas Kosmas E.2ORCID,Kavvadias Ioannis E.2ORCID,Iliadis Lazaros1ORCID,Elenas Anaxagoras2

Affiliation:

1. Lab of Mathematics and Informatics (ISCE), Department of Civil Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

2. Institute of Structural Statics and Dynamics, Department of Civil Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

Abstract

A variety of structural members and non-structural components, including bridge piers, museum artifacts, furniture, or electrical and mechanical equipment, can uplift and rock under ground motion excitations. Given the inherently non-linear nature of rocking behavior, employing machine learning algorithms to predict rocking response presents a notable challenge. In the present study, the performance of supervised ML algorithms in predicting the maximum seismic response of free-standing rigid blocks subjected to ground motion excitations is evaluated. As such, both regression and classification algorithms were developed and tested, aiming to model the finite rocking response and rocking overturn. From this point of view, it is essential to estimate the maximum rocking rotation and to efficiently classify its magnitude by successfully assigning respective labels. To this end, a dataset containing the response data of 1100 rigid blocks subjected to 15,000 ground motion excitations, was employed. The results showed high accuracy in both the classification (95% accuracy) and regression (coefficient of determination R2=0.89) tasks.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3