A Feature-Oriented Reconstruction Method for Surface-Defect Detection on Aluminum Profiles

Author:

Tang Shancheng1,Zhang Ying1ORCID,Jin Zicheng1ORCID,Lu Jianhui1,Li Heng1,Yang Jiqing1

Affiliation:

1. College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

The number of defect samples on the surface of aluminum profiles is small, and the distribution of abnormal visual features is dispersed, such that the existing supervised detection methods cannot effectively detect undefined defects. At the same time, the normal texture of the aluminum profile surface presents non-uniform and non-periodic features, and this irregular distribution makes it difficult for classical reconstruction networks to accurately reconstruct the normal features, resulting in low performance of related unsupervised detection methods. Aiming at such problems, a feature-oriented reconstruction method of unsupervised surface-defect detection method for aluminum profiles is proposed. The aluminum profile image preprocessing stage uses techniques such as boundary extraction, background removal, and data normalization to process the original image and extract the image of the main part of the aluminum profile, which reduces the influence of irrelevant data features on the algorithm. The essential features learning stage precedes the feature-optimization module to eliminate the texture interference of the irregular distribution of the aluminum profile surface, and image blocks of the area images are reconstructed one by one to extract the features through the mask. The defect-detection stage compares the structural similarity of the feature images before and after the reconstruction, and comprehensively determines the detection results. The experimental results improve detection precision by 1.4% and the F1 value by 1.2% over the existing unsupervised methods, proving the effectiveness and superiority of the proposed method.

Funder

National Key Research and Development Program of China

Shaanxi Science and Technology Plan Key Industry Innovation Chain (Group)—Project in Industrial Field

Xi’an Science and Technology Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3