Three-Dimensional Structure Reconstruction System of Nasal Cavity Based on a Short-Source Acoustic Tube

Author:

Lian Xiaoqin12,Ma Guochun12,Gao Chao12ORCID,Wang Yuqiao12,Wu Yelan12,Li Jin12ORCID,Guan Wenyang12,Gong Yonggang12

Affiliation:

1. School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

2. Key Laboratory of Industrial Internet and Big Data, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China

Abstract

The nasal cavity three-dimensional structure reconstruction is significant for the diagnosis and treatment of nasal and nasopharynx diseases. Currently, most systems for nasal cavity three-dimensional structure reconstruction are based on a long-source acoustic tube. However, the long-source acoustic tube has the weaknesses of low portability and high cost. To address these issues, a nasal cavity three-dimensional structure reconstruction system based on a short-source acoustic tube was designed in this research. The designed system comprises the lower computer of a nasal acoustic signal acquisition device and the upper computer of nasal acoustic signal analysis software. The lower computer of a nasal acoustic signal acquisition device consists of a signal processing unit, a detection unit, a microcontroller, and a USB communication interface. It is used to collect the original acoustic signal in the nasal cavity. The upper computer of nasal acoustic signal analysis software consists of the nasal cavity acoustic signal preprocessing method and the nasal cavity three-dimensional structure hierarchical reconstruction method. The nasal cavity acoustic signal preprocessing method is used to eliminate the DC offset component and suppress the high-frequency noise. Then, the nasal cavity three-dimensional structure hierarchical reconstruction method is used to establish the relationship between the cross-sectional area of the nasal cavity and the depth of the nasal cavity. In order to verify the effectiveness of the system designed in this research, the straight tube model and the simulated nasal cavity model were selected as test subjects, and the depth–cross-sectional area was selected as the evaluation indicator of the accuracy of the nasal cavity three-dimensional structure reconstruction result. The experimental results show that the root mean squared error and the mean relative error of the depth–cross-sectional area were reduced from 0.6284 cm2 to 0.0201 cm2 and 47.6467% to 1.8248%, respectively, under the straight tube model by using the nasal cavity acoustic signal preprocessing method. The root mean squared error and the mean relative error of the depth–cross-sectional area were reduced from 4.7730 cm2 to 0.1510 cm2 and 107.8128% to 3.3096%, respectively, under the simulated nasal cavity model. Meanwhile, this system can increase the effective measurement depth of the nasal cavity from 7 cm to 13 cm based on the preprocessing method. The results demonstrated that the designed system can not only reconstruct and visualize a nasal cavity three-dimensional structure with high precision but also generate comprehensive test reports. Therefore, this system can provide a basis for further auxiliary diagnosis of the disease and facilitate doctors in explaining the physiological structure of the nasal cavity to patients.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3