Analysis of Electromagnetic Interference Effect on Semiconductor Scanning Electron Microscope Image Distortion

Author:

Park You-Jin1,Pan Rong2,Montgomery Douglas C.2

Affiliation:

1. Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan

2. School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287, USA

Abstract

Most electronic devices are susceptible to electromagnetic interference (EMI); thus, it is necessary to recognize and identify the cause and effect of EMI as it can corrupt electronic signals and degrade equipment performance. Particularly, in semiconductor manufacturing, the equipment used for image capturing is subject to various noises induced by EMI, causing the image analysis to be unreliable during the image recognition and digitization process. Thus, in this research, we aim to detect and quantify the influence of EMI on semiconductor SEM (scanning electron microscope) images. For this, we apply several useful denoising and edge detection techniques to find a clearer distorted shape from EMI-generated images and then compute five shape-related measures to evaluate the distortion. From a comprehensive experimental analysis and statistical tests, it is found that the medians of all the extracted shape-related measures of high-EMI SEM images are higher than those of both medium- and weak-EMI SEM images, and also all the p-values of the statistical tests are close to 0, and thus we can conclude that all the measures are good quantification metrics for assessing the impact of EMI on semiconductor SEM images.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3