Biodegradable Magnesium Alloys for Biomedical Implants: Properties, Challenges, and Surface Modifications with a Focus on Orthopedic Fixation Repair

Author:

Thomas Kevin Koshy1ORCID,Zafar Mah Noor2ORCID,Pitt William G.3ORCID,Husseini Ghaleb A.124ORCID

Affiliation:

1. Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

2. Biomedical Engineering Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

3. Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA

4. Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

Abstract

Biomedical devices made from high-modulus and hardness materials play a critical role in enhancing the quality of life for people with bone-related ailments. While these materials have been successfully used in orthopedic applications, concerns including stress-shielding have necessitated the exploration of alternative solutions. An ideal biomedical implant requires a delicate balance of mechanical performance, corrosion resistance, tissue biocompatibility, and other properties such as tribological performance and osseointegration. This review explores the suitability of biodegradable magnesium (Mg) alloys as a promising material for biomedical implants. It delves into the essential properties of biomedical implants, emphasizing the importance of matching mechanical characteristics with human bone properties to mitigate stress shielding. The corrosion properties of implant materials are discussed, highlighting the need for controlled degradation to ensure the safety and longevity of implants. The focus then shifts to the potential of magnesium alloys as biomedical implants, examining their benefits, limitations, and the challenges associated with their high degradation rates and less-than-satisfactory mechanical properties. Alloying with elements such as aluminum, zinc, and others is explored to improve magnesium alloys’ mechanical performance and corrosion resistance. Furthermore, this review discusses surface modification techniques, including chemical conversion coatings and biomimetic deposition, as effective strategies to enhance the corrosion resistance and biocompatibility of magnesium and its alloys. These modifications offer opportunities to improve the long-term performance of magnesium-based biomedical implants. This review provides a comprehensive overview of the properties, challenges, and potential solutions associated with biodegradable magnesium alloys as a promising material for biomedical implants. It underscores the importance of addressing problems related to mechanical performance, corrosion resistance, and biocompatibility to advance the development of safe and effective biomedical implant materials.

Funder

the Dana Gas Endowed Chair for Chemical Engineering, American University of Sharjah Faculty Research Grants

Sheikh Hamdan Award for Medical Sciences

Friends of Cancer Patients

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3