Computational Accuracy and Efficiency of Room Acoustics Simulation Using a Frequency Domain FEM with Air Absorption: 2D Study

Author:

Okuzono Takeshi1ORCID

Affiliation:

1. Environmental Acoustics Laboratory, Department of Architecture, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan

Abstract

Recently, to simulate sound propagation inside architectural spaces at high frequencies, the application of computationally expensive wave-based numerical methods to room acoustics simulation is increasing gradually. Generally, standard room acoustics simulations in the frequency domain are performed based on the lossless Helmholtz equation. However, for acoustics simulation at high frequencies, consideration of the sound attenuation effect caused by air absorption is an aspect to increase the reliability of predictions. Although a simple approach based on the lossy Helmholtz equation is available to include the air absorption effect in the frequency domain, its accuracy and efficiency are still not discussed well. This paper presents an accuracy and efficiency estimation of FEM based on the lossy Helmholtz equation via two numerical problems in two dimensions: a plane wave propagation problem up to 20 kHz in a long duct with 1 km length and a sound propagation problem in a real-scale office up to 6 kHz. Results revealed that the lossy Helmholtz equation-based FEM can include the air absorption effect accurately up to 20 kHz. Moreover, a possibility of providing a higher computational efficiency at higher frequencies is suggested when the magnitude of the pure-tone sound attenuation coefficient is large.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3