Numerical Study of Aircraft Wake Vortex Evolution under the Influence of Vertical Winds

Author:

Yuan Jianhui12,Liu Jixin12,Li Changcheng12ORCID,Zhao Zheng12

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. State Key Laboratory of Air Traffic Management System, Nanjing 211106, China

Abstract

Separating wake vortices is crucial for aircraft landing safety and essential to airport operational efficiency. Vertical wind, as a typical atmospheric condition, plays a significant role, and studying the evolution characteristics of wake vortices under this condition is of paramount importance for developing dynamic wake separation systems. In this study, we employed the SST k-ω turbulence model based on an O-Block structured grid to numerically simulate the simplified wing model. We analyzed the variations in the wake vortex structure and parameters of the Airbus A320 during the near-field phase under different vertical wind directions and speeds. The results indicate that favorable vertical winds cause a “flattening” deformation in the wake vortex. Vertical winds reduce the initial vortex strength, accelerate the rate of vortex decay, and influence the trajectory of the vortex core. Notably, under wind speeds of 1~3 m/s, the decay rate is more significant than under 4 m/s. When vertical wind speeds are substantial, it can lead to irregular motion and interactions within the vortex core, forming secondary vortices.

Funder

National Key R&D Program of China

Safety Capability Fund of the Civil Aviation Administration of China

Nanjing University of Aeronautics and Astronautics Graduate Research and Practice Innovation Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3