Machinery Fault Signal Detection with Deep One-Class Classification

Author:

Yoon Dosik1,Yu Jaehong1

Affiliation:

1. Department of Industrial and Management Engineering, Incheon National University, Incheon 22012, Republic of Korea

Abstract

Fault detection of machinery systems is a fundamental prerequisite to implementing condition-based maintenance, which is the most eminent manufacturing equipment system management strategy. To build the fault detection model, one-class classification algorithms have been used, which construct the decision boundary only using normal class. For more accurate one-class classification, signal data have been used recently because the signal data directly reflect the condition of the machinery system. To analyze the machinery condition effectively with the signal data, features of signals should be extracted, and then, the one-class classifier is constructed with the features. However, features separately extracted from one-class classification might not be optimized for the fault detection tasks, and thus, it leads to unsatisfactory performance. To address this problem, deep one-class classification methods can be used because the neural network structures can generate the features specialized to fault detection tasks through the end-to-end learning manner. In this study, we conducted a comprehensive experimental study with various fault signal datasets. The experimental results demonstrated that the deep support vector data description model, which is one of the most prominent deep one-class classification methods, outperforms its competitors and traditional methods.

Funder

Incheon National University (International Cooperative) Research Grant

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3