Vehicle Activity Dataset: A Multimodal Dataset to Understand Vehicle Emissions with Road Scenes for Eco-Routing

Author:

Jendoubi Firas1ORCID,Pradeep Vishnu1ORCID,Khemmar Redouane1ORCID,Berradia Tahar1ORCID,Rossi Romain1ORCID,Sibbille Benjamin2,Fourre Jérémy1ORCID,Ohayon Avigaël3,Jouni Mohammad3ORCID

Affiliation:

1. ESIGELEC, IRSEEM, UNIROUEN, Normandie University, 76000 Rouen, France

2. CERTAM, 1 Rue Joseph Fourier, 76000 Rouen, France

3. SEGULA Technologies, 13 Bis Avenue Albert Einstein, 69000 Lyon, France

Abstract

In the field of smart mobility, Artificial Intelligence (AI) approaches are influential and can make a highly beneficial contribution. Our project aims to develop a real-time ecological map of road traffic. This map will allow electric vehicles (EVs) and thermal vehicles (TVs) to display the cost of energy consumption and CO2 emissions on different road sections. In urban environments, road traffic emissions are a significant contributor to environmental pollution, with vehicle emissions being a major component. Addressing these impacts requires a thorough understanding of the operational behavior of vehicles on different road infrastructures within the region. This paper presents a novel, comprehensive dataset, the Vehicle Activity Dataset (VAD), designed to assess the emissions and fuel consumption characteristics of vehicles about their actual operating environment. Constructed from a large number of real-world driving scenarios, VAD incorporates emission data collected by an industrial Portable Emission Measurement System (PEMS), road scenes captured by an RGB camera, and the detection of different object classes within these images. The primary objective of VAD is to provide a comprehensive understanding of the relationship between vehicle emissions and the diverse range of objects present on the road. Experimental results in real road traffic environments through different studies demonstrate the robustness of the developed dataset.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3