Abstract
In recent years, there has been a remarkable advance in monitoring technologies in many environments, be they urban or rural. These technologies, included in the Internet of Things (IoT) domain, allow remote control and acquisition of data from sensors for their subsequence analysis. All these systems are based on the interaction between sensors and actuators. To achieve this goal, it is necessary to provide a very high level of connectivity between the devices, especially as far as wireless systems are concerned. In this sense, there is a great variety of standards in the market of communication networks oriented to this end. One of the biggest challenges today is to allow inter-operability between these different technologies in order to homogenize this field. In addition to this, it is intended to introduce new communication techniques that can provide certain additional advantages to those already existing. The main idea is the creation of a cellular network where radiofrequency and optical technologies coexist, and whose link with the rest of the world is through long-range and low-consumption wireless technologies. The center of each cell, that is the lighting system, can be powered using solar panels, as can the existing systems in the market. The objective is that these panels are capable of providing the necessary energy to the rest of the necessary systems.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献