Dynamic Spatial–Temporal Self-Attention Network for Traffic Flow Prediction

Author:

Wang Dong1ORCID,Yang Hongji2ORCID,Zhou Hua3

Affiliation:

1. National Pilot School of Software, Yunnan University, Kunming 650091, China

2. School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK

3. College of Big Data and Intelligent Engineering, SouthWest Forestry University, Kunming 650233, China

Abstract

Traffic flow prediction is considered to be one of the fundamental technologies in intelligent transportation systems (ITSs) with a tremendous application prospect. Unlike traditional time series analysis tasks, the key challenge in traffic flow prediction lies in effectively modelling the highly complex and dynamic spatiotemporal dependencies within the traffic data. In recent years, researchers have proposed various methods to enhance the accuracy of traffic flow prediction, but certain issues still persist. For instance, some methods rely on specific static assumptions, failing to adequately simulate the dynamic changes in the data, thus limiting their modelling capacity. On the other hand, some approaches inadequately capture the spatiotemporal dependencies, resulting in the omission of crucial information and leading to unsatisfactory prediction outcomes. To address these challenges, this paper proposes a model called the Dynamic Spatial–Temporal Self-Attention Network (DSTSAN). Firstly, this research enhances the interaction between different dimension features in the traffic data through a feature augmentation module, thereby improving the model’s representational capacity. Subsequently, the current investigation introduces two masking matrices: one captures local spatial dependencies and the other captures global spatial dependencies, based on the spatial self-attention module. Finally, the methodology employs a temporal self-attention module to capture and integrate the dynamic temporal dependencies of traffic data. We designed experiments using historical data from the previous hour to predict traffic flow conditions in the hour ahead, and the experiments were extensively compared to the DSTSAN model, with 11 baseline methods using four real-world datasets. The results demonstrate the effectiveness and superiority of the proposed approach.

Funder

Research on Key Common Technology of Digital Industry Innovation Platform

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3