Exploiting Autoencoder-Based Anomaly Detection to Enhance Cybersecurity in Power Grids

Author:

Harrou Fouzi1ORCID,Bouyeddou Benamar2ORCID,Dairi Abdelkader3ORCID,Sun Ying1

Affiliation:

1. Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

2. LESM Laboratory, Department of Telecommunications, Faculty of Technology, University of Saida-Dr Moulay Tahar, Saida 20000, Algeria

3. Computer Science Department, University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), El Mnaouar, BP 1505, Oran 31000, Algeria

Abstract

The evolution of smart grids has led to technological advances and a demand for more efficient and sustainable energy systems. However, the deployment of communication systems in smart grids has increased the threat of cyberattacks, which can result in power outages and disruptions. This paper presents a semi-supervised hybrid deep learning model that combines a Gated Recurrent Unit (GRU)-based Stacked Autoencoder (AE-GRU) with anomaly detection algorithms, including Isolation Forest, Local Outlier Factor, One-Class SVM, and Elliptical Envelope. Using GRU units in both the encoder and decoder sides of the stacked autoencoder enables the effective capture of temporal patterns and dependencies, facilitating dimensionality reduction, feature extraction, and accurate reconstruction for enhanced anomaly detection in smart grids. The proposed approach utilizes unlabeled data to monitor network traffic and identify suspicious data flow. Specifically, the AE-GRU is performed for data reduction and extracting relevant features, and then the anomaly algorithms are applied to reveal potential cyberattacks. The proposed framework is evaluated using the widely adopted IEC 60870-5-104 traffic dataset. The experimental results demonstrate that the proposed approach outperforms standalone algorithms, with the AE-GRU-based LOF method achieving the highest detection rate. Thus, the proposed approach can potentially enhance the cybersecurity in smart grids by accurately detecting and preventing cyberattacks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3