Transcriptomics Reveals the Molecular Basis for Methyl Jasmonate to Promote the Synthesis of Monoterpenoids in Schizonepeta tenuifolia Briq.

Author:

Shi Jianling1,Cui Yingjing1,Zhang Jimeng1,Sun Liqiong1,Tang Xiaoqing1

Affiliation:

1. Institute of Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Background: Methyl jasmonate has an important effect on the synthesis of plant secondary metabolites. Schizonepeta tenuifolia Briq. has a wide range of pharmacological effects and the secondary metabolites are dominated by monoterpenes (pulegone, menthone). Objective: It is essential to determine the changes in secondary metabolites in S. tenuifolia under methyl jasmonate treatment and to probe the molecular mechanism. This can improve the accumulation of secondary metabolites in the medicinal plant S. tenuifolia and enrich the information gene expression at different MeJA levels, which can help to elucidate the molecular mechanism of monoterpenoid synthesis in S. tenuifolia. Methods: In this study, we determined the changes in the content of monoterpenoids in S. tenuifolia under methyl jasmonate treatment. Meanwhile, we established a transcriptome database of S. tenuifolia under methyl jasmonate level using high-throughput sequencing. Results: A certain concentration of MeJA promoted the accumulation of monoterpenoids in S. tenuifolia. The transcriptome database of S. tenuifolia leaves under 0, 50, 100 and 250 μM MeJA treatment was established. We generated 88,373 unigenes with an N50 length of 2678 bp, of which 50,843 (57.53%) can be annotated in at least one database. Compared with the CK (0 μM) group, 12,557 (50 μM), 15,409 (100 μM) and 13,286 (250 μM) differentially expressed genes were identified. GO and KEGG enrichment analysis revealed that JA signal transduction and monoterpenoid synthesis were the two most significant enrichment pathways. The expression levels of related DEGs involved in JA signaling and monoterpenoid synthesis were significantly up-regulated by MeJA. In addition, our phenotypic and differentially expressed gene association analysis revealed that monoterpenoid biosynthesis in S. tenuifolia was more associated with genes involved in plant trichome branching, phytohormone signaling and transcriptional regulation. Conclusions: This study confirmed that methyl jasmonate significantly promoted monoterpenoid biosynthesis in S. tenuifolia. A large number of genes responding to methyl jasmonate were associated with JA signaling and monoterpenoid biosynthesis.

Funder

2019 Medical Service and Guarantee Capability Subsidy Funds—“National traditional Chinese medicine resources survey project”

Traditional Chinese Medicine Whole Industry Chain Innovation Research Project

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3