Affiliation:
1. Department of Materials Science and Engineering, North China University of Technology, Beijing 100144, China
Abstract
The effect of heat treatment on the microstructure and tensile properties of an as-cast Al0.6CoCrFeNi high-entropy alloy (HEA) was investigated in this paper. The results show that the as-cast Al0.6CoCrFeNi HEA presents a typical FCC dendrite morphology with the interdendritic region consisting of BCC/B2 structure and heat treatment can strongly affect the microstructure and mechanical properties of HEA. Microstructure analysis revealed the precipitation of a nano-sized L12 phase in the FCC dendrite and the formation of the FCC and σ phases in the interdendritic region after annealing at 700 °C. The coarse B2 phase was directly precipitated from the FCC dendrite in the 900 °C-annealed sample, with the coexistence of the B2, FCC, and σ phases in the interdendritic region. Then, the interdendritic region converted to a B2 and FCC dual-phase structure caused by the re-decomposition of the σ phase after annealing at 1100 °C. The tensile test results show that the 700 °C-annealed HEA presents the most significant strengthening effect, with increments of corresponding yield strength being about 107%, which can be attributed to the numerous nano-sized L12 precipitates in the FCC dendrite. The mechanical properties of 1100 °C-annealed alloy revert to a level close to that of the as-cast alloy, which can be attributed to the coarsening mechanism of B2 precipitates and the formation of a soft FCC phase in the interdendritic region. The observed variation in mechanical properties during heat treatment follows the traditional trade-off relationship between strength and plasticity.
Funder
National Natural Science Foundation of China
Beijing Natural Science Foundation
Science and Technology Project of Beijing Municipal Education Commission
North China University of Technology
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献