A Theoretical Study on the Spatiotemporal Variation in the Temperature Field in Linings of High-Water-Temperature Tunnels

Author:

Huang Mingli1,Huang Meng1,Li Jiacheng1,Qian Yuan2

Affiliation:

1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China

2. College of Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

On the basis of the theory of unsteady heat conduction, discrete equations for the unsteady temperature field in the secondary linings of high-water-temperature tunnels when considering the hydration heat of lining concrete were derived and established. Spatiotemporal variation in the temperature field of tunnel linings was revealed through the analysis of numerical examples. Research demonstrates that the temperature of the secondary lining within a thickness range of approximately 15 cm near the tunnel clearance decreases sharply under the condition that the lining thickness is 35 cm. The higher the temperature on the lining’s outer surface, the more drastically the lining temperature decreases. When considering the hydration heat of lining concrete, the lining temperature increases to a certain extent after a sudden drop, reaching stability after approximately 20 h, and the lining temperature is approximately 1–2 °C higher than that without taking concrete hydration heat into account. The temperature difference between the tunnel lining’s core and its inner and outer surfaces is positively and negatively correlated with the temperature of the secondary lining’s outer surface, respectively. When the temperature of the secondary lining’s outer surface is not higher than 65 °C, the temperature difference between the tunnel lining’s core and its inner and outer surfaces is less than 20 °C. Conversely, it partially or completely exceeds 20 °C, in which case an insulation method is recommended to utilize to prevent thermal cracks in secondary linings triggered via a high temperature difference.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3