Affiliation:
1. Department of Chemical and Environmental Engineering, Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Seville, Spain
2. Department of Continuum Mechanics and Structural Analysis, Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Seville, Spain
Abstract
This research analyses how different cement mortars behave in terms of their physical and mechanical properties. Several components were necessary to make seven mixes of mortars, such as Portland cement, standard sand, and solid waste from a factory of sodium silicate, in addition to graphene oxide. Furthermore, graphene oxide (GO) was selected to reduce the micropores and increase the nanopores in the cement mortar. Hence, some tests were carried out to determine their density, humidity content, water absorption capacity, open void porosity, the alkali–silica reaction, as well as flexural and mechanical strength and acid resistance. Thus, standard-sand-manufactured mortars’ mechanical properties were proved to be slightly better than those manufactured with recycled waste; the mortars with this recycled aggregate presented problems of alkali–silica reaction. In addition, GO (in a ratio GO/cement = 0.0003) performed as a filler, improving the mechanical properties (30%), alkali–silica (80%), and acid resistance
Funder
Ministerio de Ciencia e Innovación of Spain
Regional Government of Andalusia
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献