Using Multistage Energy Barrier of Heterojunctions in Improving Cr(VI) Detection

Author:

Zhao Minggang1,He Yichang1,Dong Xiaotong1,Pang Kun1,He Qian2,Ma Ye1,Cui Hongzhi1

Affiliation:

1. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China

2. School of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China

Abstract

Detecting heavy metals in seawater is challenging due to the high salinity and complex composition, which cause strong interference. To address this issue, we propose using a multistage energy barrier as an electrochemical driver to generate electrochemical responses that can resist interference. The Ni-based heterojunction foams with different types of barriers were fabricated to detect Cr(VI), and the effects of the energy barriers on the electrochemical response were studied. The single-stage barrier can effectively drive the electrochemical response, and the multistage barrier is even more powerful in improving sensing performance. A prototype Ni/NiO/CeO2/Au/PANI foam with multistage barriers achieved a high sensitivity and recovery rate (93.63–104.79%) in detecting seawater while resisting interference. The use of multistage barriers as a driver to resist electrochemical interference is a promising approach.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central University

Natural Science Foundation of Shandong Province

Fellowship of China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3