Salt Spray Resistance of Roller-Compacted Concrete with Surface Coatings

Author:

Zhang Huigui1,Zhang Wuman1,Meng Yanfei1

Affiliation:

1. School of Transportation Science and Engineering, Beihang Univerisity, Beijing 100191, China

Abstract

In order to evaluate the feasibility of surface coatings in improving the performance of RCC under salt spray conditions, sodium silicate (SS), isooctyl triethoxy silane (IOTS), and polyurea (PUA) were used as surface coatings to prepare four types of roller-compacted concrete (RCC): reference RCC, RCC-SS, RCC-IOTS, and RCC-PUA. A 5% sodium sulfate solution was used to simulate a corrosive marine environment with high temperatures, high humidity, and high concentrations of salt spray. This study focuses on investigating various properties, including water absorption, abrasion loss, compressive strength, dynamic elastic modulus, and impact resistance. Compared to the reference RCC, the 24 h water absorption of RCC-SS, RCC-IOTS, and RCC-PUA without salt spray exposure decreased by 22.8%, 77.2%, and 89.8%, respectively. After 300 cycles of salt spray, the abrasion loss of RCC-SS, RCC-IOTS, and RCC-PUA reduced by 0.3%, 4.4%, and 34.3%, respectively. Additionally, their compressive strengths increased by 3.8%, 0.89%, and 0.22%, and the total absorbed energy at fracture increased by 64.8%, 53.2%, and 50.1%, respectively. The results of the study may provide a reference for the selection of coating materials under conditions similar to those in this study.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3