The Influence Mechanism of Interfacial Characteristics between CSH and Montmorillonite on the Strength Properties of Cement-Stabilized Montmorillonite Soil

Author:

Ge Jinyu1,Xu Fei1ORCID,Wei Hua1,Wang Qiang2,Peng Hu2,Zhou Juan2,Li Huaisen1

Affiliation:

1. Materials & Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China

2. Nanjing Highway Development Center, Nanjing 210008, China

Abstract

To elucidate the impact mechanism of the interfacial characteristics of Calcium Silicate Hydrate gel (CSH)–Montmorillonite (MMT) at the nanoscale on the strength of cement-stabilized montmorillonite soil, this paper begins by examining the interfacial energy. Through Molecular Dynamics (MD) simulation methods, the energy at the MMT and CSH binding interface is quantitatively calculated, and the correlation between the interfacial energy and macroscopic strength is determined in conjunction with grey relational analysis. Finally, based on the characterization results from X-ray diffraction (XRD), the accuracy and sources of deviation in the MD simulation results are discussed. The study shows the CSH-MMT interfacial energy is composed of van der Waals forces, hydrogen bond energy, and electrostatic interactions, which are influenced by the migration of cations; there is a good consistency between the CSH-MMT interfacial energy and the unconfined compressive strength (UCS) of cement-stabilized soil (cemented soil), with the interfacial energy decreasing as the number of water molecules increases and first decreasing then increasing as the number of MMT layers grows; by adjusting the mix proportions, the magnitude of the CSH-MMT interfacial energy can be altered, thereby optimizing the strength of the cemented soil.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Water Science and Technology Project of Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3