Manufacturing of Aluminum Nano-Composites Reinforced with Nano-Copper and High Graphene Ratios Using Hot Pressing Technique

Author:

Yehia Hossam M.1ORCID,Elmetwally Reham A. H.2,Elhabak Abdelhalim M.2,El-Kady Omayma A.3,Shash Ahmed Yehia24ORCID

Affiliation:

1. Mechanical Department, Faculty of Technology and Education, Helwan University, Cairo 11795, Egypt

2. Faculty of Engineering, Cairo University, Cairo 12613, Egypt

3. Powder Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan 11421, Egypt

4. Faculty of Engineering and Materials Science, German University in Cairo, New Cairo 11511, Egypt

Abstract

In this study, the nano-aluminum powder was reinforced with a hybrid of copper and graphene nanoplatelets (GNPs). The ratios of GNPs were 0 wt%, 0.4 wt%, 0.6 wt%, 1.2 wt% and 1.8 wt%. To avoid the reaction between aluminum and graphene and, consequently, the formation of aluminum carbide, the GNP was first metalized with 5 wt% Ag and then coated with the predetermined 15 wt% Cu by the electroless coating process. In addition, the coating process was performed to improve the poor wettability between metal and ceramic. The Al/(GNPs-Ag)Cu nanocomposites with a high relative density of 99.9% were successfully prepared by the powder hot-pressing techniques. The effects of (GNPs/Ag) and Cu on the microstructure, density, hardness, and compressive strength of the Al-Cu nanocomposite were studied. As a result of agitating the GNPs during the cleaning and silver and Cu-plating, a homogeneous distribution was achieved. Some layers formed nano-tubes. The Al4C3 phase was not detected due to coating GNPs with Cu. The Cu9Al4 intermetallic was formed during the sintering process. The homogeneous dispersion of Cu and different ratios of GNs, good adhesion, and the formation of the new Cu9Al4 intermetallic improved in hardness. The pure aluminum sample recorded 216.2 HV, whereas Al/Cu reinforced with 1.8 GNs recorded 328.42 HV with a 51.9% increment. The compressive stress of graphene samples was improved upon increasing the GNPs contents. The Al-Cu/1.8 GNs sample recorded 266.99 MPa.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3