Benefits of Aeronautical Preform Manufacturing through Arc-Directed Energy Deposition Manufacturing

Author:

Suárez Alfredo1ORCID,Ramiro Pedro1ORCID,Veiga Fernando2ORCID,Ballesteros Tomas2ORCID,Villanueva Pedro2ORCID

Affiliation:

1. Tecnalia, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 7, 20009 Donostia-San Sebastian, Spain

2. Engineering Department, Public University of Navarra, Los Pinos Building, Arrosadia Campus, 31006 Pamplona, Spain

Abstract

The paper introduces an innovative aerospace component production approach employing Wire Arc Additive Manufacturing (WAAM) technology to fabricate near-finished preforms from Ti6Al4V titanium. Tensile tests on WAAM Ti6Al4V workpieces demonstrated reliable mechanical properties, albeit with identified anisotropic behavior in horizontal samples, underscoring the need for optimization. This alternative manufacturing strategy addresses the challenges associated with machining forged preforms, marked by a high Buy To Fly (BTF) ratio (>10), leading to material wastage, prolonged machining durations, elevated tool expenses, and heightened waste and energy consumption. Additionally, logistical and storage costs are increased due to extended delivery timelines, exacerbated by supply issues related to the current unstable situation. The utilization of WAAM significantly mitigates initial BTF, preform costs, waste production, machining durations, and associated expenditures, while notably reducing lead times from months to mere hours. The novelty in this study lies in the application of Wire Arc Additive Manufacturing (WAAM) technology for the fabrication of titanium aircraft components. This approach includes a unique height compensation strategy and the implementation of various deposition strategies, such as single-seam, overlapping, and oscillating.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3