Microalga-Mediated Tertiary Treatment of Municipal Wastewater: Removal of Nutrients and Pathogens

Author:

Rani Swati,Chowdhury RajaORCID,Tao WendongORCID,Nedbalová LindaORCID

Abstract

The microalgal strain Chlorella sorokiniana isolated from a waste stabilization pond was used for tertiary treatment of municipal wastewater. Three light:dark (L:D) regimes of 12:12, 16:8, and 24:0 were used for treating wastewater in microalga (A), microalga + sludge (A + S), and sludge (S) reactors. The removal of nutrients (N and P) was found to be the highest in the microalga-based reactor, with more than 80% removal of biochemical oxygen demand (BOD) and 1.2–5.6 log unit removal of pathogens. The addition of sludge improved chemical oxygen demand (COD) removal. Nitrifiers were found to be predominant in the A + S reactor. Algal biomass productivity was more than 280 mg/L/d in all the L:D regimes. The increase in light regime improved nutrient removal and biomass productivity in the algal reactor. Results of the kinetic study showed that (i) nitrifiers had more affinity for ammonium than microalga, and hence, most of the ammonia was oxidized to nitrate, (ii) microalga assimilated nitrate as the primary nitrogen source in the A + S reactor, and (iii) solubilization of particulate organic nitrogen originated from dead cells reduced the nitrogen removal efficiency. However, in the microalga-based reactor, the ammonium uptake was higher than nitrate uptake. Among pathogens, the removal of Salmonella and Shigella was better in the A + S reactor than in the other two reactors (microalga and sludge reactor). Additionally, the heterotrophic plate count was drastically reduced in the presence of microalga. No such drastic reduction was observed in the stand-alone sludge reactor. Kinetic modeling revealed that microalga–pathogen competition and pH-induced die-off were the two predominant factors for pathogen inactivation.

Funder

Dept of Biotechnology, GOI

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3