STC-YOLO: Small Object Detection Network for Traffic Signs in Complex Environments

Author:

Lai Huaqing1ORCID,Chen Liangyan1,Liu Weihua1,Yan Zi1,Ye Sheng1

Affiliation:

1. School of Electric and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China

Abstract

The detection of traffic signs is easily affected by changes in the weather, partial occlusion, and light intensity, which increases the number of potential safety hazards in practical applications of autonomous driving. To address this issue, a new traffic sign dataset, namely the enhanced Tsinghua-Tencent 100K (TT100K) dataset, was constructed, which includes the number of difficult samples generated using various data augmentation strategies such as fog, snow, noise, occlusion, and blur. Meanwhile, a small traffic sign detection network for complex environments based on the framework of YOLOv5 (STC-YOLO) was constructed to be suitable for complex scenes. In this network, the down-sampling multiple was adjusted, and a small object detection layer was adopted to obtain and transmit richer and more discriminative small object features. Then, a feature extraction module combining a convolutional neural network (CNN) and multi-head attention was designed to break the limitations of ordinary convolution extraction to obtain a larger receptive field. Finally, the normalized Gaussian Wasserstein distance (NWD) metric was introduced to make up for the sensitivity of the intersection over union (IoU) loss to the location deviation of tiny objects in the regression loss function. A more accurate size of the anchor boxes for small objects was achieved using the K-means++ clustering algorithm. Experiments on 45 types of sign detection results on the enhanced TT100K dataset showed that the STC-YOLO algorithm outperformed YOLOv5 by 9.3% in the mean average precision (mAP), and the performance of STC-YOLO was comparable with that of the state-of-the-art methods on the public TT100K dataset and CSUST Chinese Traffic Sign Detection Benchmark (CCTSDB2021) dataset.

Funder

excellent young and middle-aged scientific and technological innovation teams in Colleges and universities of Hubei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3