Assessing the Effect of ADS-B Message Drop-Out in Detect and Avoid of Unmanned Aircraft System Using Monte Carlo Simulation

Author:

Tabassum AsmaORCID,Semke William

Abstract

This work analyzes the severity and risk associated with automatic dependent surveillance-broadcast (ADS-B) message drop-out in detect and avoid (DAA) function of unmanned aircraft systems (UAS). Performance assessment of the universal access transceiver (UAT) ADS-B message implies that, in some cases, ADS-B fails to update within a specified update interval, which is referred to as ‘drop-out’ in this work. ADS-B is a fundamental surveillance sensor for both class 1 and class 2 DAA systems. Message loss or drop-out has been found as one of the common limitations of the ADS-B system. The key feature of this study is incorporating the update rate of real ADS-B data transmitted from the manned aircraft. The data were received from the Grand Forks International Airport, North Dakota. Monte Carlo method has been adopted to resolve encounter scenarios in the presence of drop-out. The change in the alert triggered by the UAS DAA in the presence of ADS-B drop-out has been investigated. Furthermore, the risk matrices are created to quantify the associated risk with drop-out affected alerts. Simulation results depict that both the duration of drop-out and DAA look-ahead time affect the alert-triggering function of UAS. With a small look-ahead window and longer duration of drop-out, the number of warning alerts increases. Also, alerts are affected more during an overtaking encounter than that of a head-to-head encounter. A system-level analysis is also carried out to recognize the potential reasons behind the ADS-B drop-out.

Funder

Federal Aviation Administration

Publisher

MDPI AG

Subject

Public Health, Environmental and Occupational Health,Safety Research,Safety, Risk, Reliability and Quality

Reference44 articles.

1. Mitigation of airspace congestion impact on airline networks

2. Unmanned Aircraft Systems Trends in UAS and Forecasthttps://www.marketwatch.com/press-release/unmanned-aircraft-systems-uas-market-2018-global-trend-segmentation-and-opportunities-forecast-to-2025-2018-07-17

3. FAA Code of Federal Regulations: 14 CFR, Part 91, Sec. 91.113https://www.law.cornell.edu/cfr/text/14/part-91

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3