Abstract
The Internet of Things enables experts of given domains to create smart user experiences for interacting with the environment. However, development of such experiences requires strong programming skills, which are challenging to develop for non-technical users. This paper presents several extensions to the block-based programming language used in App Inventor to make the creation of mobile apps for smart learning experiences less challenging. Such apps are used to process and graphically represent data streams from sensors by applying map-reduce operations. A workshop with students without previous experience with Internet of Things (IoT) and mobile app programming was conducted to evaluate the propositions. As a result, students were able to create small IoT apps that ingest, process and visually represent data in a simpler form as using App Inventor’s standard features. Besides, an experimental study was carried out in a mobile app development course with academics of diverse disciplines. Results showed it was faster and easier for novice programmers to develop the proposed app using new stream processing blocks.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献