Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications

Author:

Padmanabhan PreethiORCID,Zhang Chao,Charbon Edoardo

Abstract

Direct time-of-flight (DTOF) is a prominent depth sensing method in light detection and ranging (LiDAR) applications. Single-photon avalanche diode (SPAD) arrays integrated in DTOF sensors have demonstrated excellent ranging and 3D imaging capabilities, making them promising candidates for LiDARs. However, high background noise due to solar exposure limits their performance and degrades the signal-to-background noise ratio (SBR). Noise-filtering techniques based on coincidence detection and time-gating have been implemented to mitigate this challenge but 3D imaging of a wide dynamic range scene is an ongoing issue. In this paper, we propose a coincidence-based DTOF sensor architecture to address the aforementioned challenges. The architecture is analyzed using a probabilistic model and simulation. A flash LiDAR setup is simulated with typical operating conditions of a wide angle field-of-view (FOV = 40 ° ) in a 50 klux ambient light assumption. Single-point ranging simulations are obtained for distances up to 150 m using the DTOF model. An activity-dependent coincidence is proposed as a way to improve imaging of wide dynamic range targets. An example scene with targets ranging between 8–60% reflectivity is used to simulate the proposed method. The model predicts that a single threshold cannot yield an accurate reconstruction and a higher (lower) reflective target requires a higher (lower) coincidence threshold. Further, a pixel-clustering scheme is introduced, capable of providing multiple simultaneous timing information as a means to enhance throughput and reduce timing uncertainty. Example scenes are reconstructed to distinguish up to 4 distinct target peaks simulated with a resolution of 500 ps. Alternatively, a time-gating mode is simulated where in the DTOF sensor performs target-selective ranging. Simulation results show reconstruction of a 10% reflective target at 20 m in the presence of a retro-reflective equivalent with a 60% reflectivity at 5 m within the same FOV.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Depth estimation in SPAD-based LIDAR sensors;Optics Express;2024-01-16

2. Modeling and Analysis of Noise Reduction Method in SPAD-Based LiDAR System;IEEE Photonics Journal;2023-12

3. Simulation of a Direct Time-of-Flight LiDAR-System;IEEE Sensors Journal;2023-07-01

4. Consistent Direct Time-of-Flight Video Depth Super-Resolution;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

5. Refractive-type varifocal liquid-crystal Fresnel lenses for smart contacts;Optics Express;2023-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3