Identifying Cost-Effective Low-Impact Development (LID) under Climate Change: A Multi-Objective Optimization Approach

Author:

Abduljaleel YasirORCID,Demissie Yonas

Abstract

Low-impact development (LID) is increasingly used to reduce stormwater’s quality and quantity impacts associated with climate change and increased urbanization. However, due to the significant variations in their efficiencies and site-specific requirements, an optimal combination of different LIDs is required to benefit from their full potential. In this article, the multi-objective genetic algorithm (MOGA) was coupled with the stormwater management model (SWMM) to identify both hydrological and cost-effective LIDs combinations within a large urban watershed. MOGA iteratively optimizes the types, sizes, and locations of different LIDs using a combined cost- and runoff-related objective function under both past and future stormwater conditions. The infiltration trench (IT), rain barrel (RB), rain gardens (RG), bioretention (BR), and permeable pavement were used as potential LIDs since they are common in our study area—the city of Renton, WA, USA. The city is currently adapting different LIDs to mitigate the recent increase in stormwater system failures and flooding. The results from our study showed that the optimum combination of LIDs in the city could reduce the peak flow and total runoff volume by up to 62.25% and 80% for past storms and by13% and 29% for future storms, respectively. The findings and methodologies presented in this study are expected to contribute to the ongoing efforts to improve the performance of large-scale implementations of LIDs.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3