Comparative Evaluation of Five Hydrological Models in a Large-Scale and Tropical River Basin

Author:

Ávila LeandroORCID,Silveira Reinaldo,Campos AndréORCID,Rogiski NathalliORCID,Gonçalves José,Scortegagna Arlan,Freita Camila,Aver Cássia,Fan FernandoORCID

Abstract

Hydrological modeling is an important tool for water resources management, providing a feasible solution to represent the main hydrological processes and predict future streamflow regimes. The literature presents a set of hydrological models commonly used to represent the rainfall-runoff process in watersheds with different meteorological and geomorphological characteristics. The response of such models could differ significantly for a single precipitation event, given the uncertainties associated with the input data, parameters, and model structure. In this way, a correct hydrological representation of a watershed should include the evaluation of different hydrological models. This study explores the use and performance of five hydrological models to represent daily streamflow regimes at six hydropower plants located in the Tocantins river basin (Brazil). The adopted models include the GR4J, HYMOD, HBV, SMAP, and MGB-IPH. The evaluation of each model was elaborated considering the calibration (2014–2019) and validation period (2005–2010) using observed data of precipitation and climatological variables. Deterministic metrics and statistical tests were used to measure the performance of each model. For the calibration stage, results show that all models achieved a satisfactory performance with NSE values greater than 0.6. For the validation stage, only the MGB-IPH model present a good performance with NSE values greater than 0.7. A bias correction procedure were applied to correct the simulated data of conceptual models. However, the statistical tests exposed that only the MGB-IPH model could preserve the main statistical properties of the observed data. Thus, this study discusses and presents some limitations of the lumped model to represent daily streamflows in large-scale river basins (>50,000 km2).

Funder

Agência Nacional de Energia Elétrica

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3