Manufacturing of Ni-Co-Fe-Cr-Al-Ti High-Entropy Alloy Using Directed Energy Deposition and Evaluation of Its Microstructure, Tensile Strength, and Microhardness

Author:

Jeong Ho-In1,Kim Jae-Hyun1,Lee Choon-Man1ORCID

Affiliation:

1. Mechatronics Research Center, Changwon National University, Changwon 51140, Republic of Korea

Abstract

High-entropy alloys (HEAs) have drawn significant attention due to their unique design and superior mechanical properties. Comprising 5–35 at% of five or more elements with similar atomic radii, HEAs exhibit high configurational entropy, resulting in single-phase solid solutions rather than intermetallic compounds. Additive manufacturing (AM), particularly direct energy deposition (DED), is effective for producing HEAs due to its rapid cooling rates, which ensure uniform microstructures and minimize defects. These alloys typically form face-centered cubic (FCC) or body-centered cubic (BCC) structures, contributing to their exceptional strength, hardness, and mechanical performance across various temperatures. However, FCC-structured HEAs often have low yield strengths, posing a challenge for structural applications. In this study, a Ni-Co-Fe-Cr-Al-Ti HEA was manufactured using the DED method. This study proposes that the addition of aluminum and titanium creates a γ + γ′ phase structure within a multicomponent FCC-HEA matrix, enhancing the thermal stability and coarsening the resistance and strength. The γ′ phase with an ordered FCC structure significantly improves the mechanical properties. Analysis confirmed the presence of the γ + γ′ structure and demonstrated the alloy’s high tensile strength and microhardness. This approach underscores the potential of AM techniques in advancing HEA production for high-performance applications.

Funder

Korean government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3