Affiliation:
1. Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
2. Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle (Saale), Germany
Abstract
Fiber-reinforced composites (FRCs) represent a promising class of engineering materials due to their mechanical performance. However, the vast majority of FRCs are currently manufactured using carbon and glass fibers, which raises concerns because of the difficulties in recycling and the reliance on finite fossil resources. On the other hand, the use of natural fibers is still hampered due to the problems such as, e.g., differences in polarity between the reinforcement and the polymer matrix components, leading to a significant decrease in composite durability. In this work, we present a natural fiber-reinforced composite (NFRC), incorporating plasma pre-treated flax fibers as the reinforcing element, thermoplastic polylactic acid (PLA) as a matrix, and a key point of the current study—a thermoset coating based on epoxidized linseed oil for adhesion improvement. Using atmospheric plasma-jet treatment allows for increasing the fiber’s surface energy from 20 to 40 mN/m. Furthermore, a thermoset coating layer based on epoxidized linseed oil, in conjunction with dodecyl succinic anhydride (DDSA) as a curing agent and 2,4,6-tris(dimethyl amino methyl) phenol (DMP-30) as a catalyst, has been developed. This coated layer exhibits a decomposition temperature of 350 °C, and there is a substantial increase in the dispersive surface-energy part of the coated flax fibers from 8 to 30 mN/m. The obtained natural fiber-reinforced composite (NFRC) was prepared by belt-pressing with a PLA film, and its mechanical properties were evaluated by tensile testing. The results showed an elastic modulus up to 18.3 GPa, which is relevant in terms of mechanical properties and opens up a new pathway to use natural-based fiber-reinforced bio-based materials as a convenient approach to greener FRCs.
Funder
Laboratory of Process Technology, University of Freiburg