Process Parameters Optimization and Numerical Simulation of AlCoCrFeNi High-Entropy Alloy Coating via Laser Cladding

Author:

Chen Bin12ORCID,Zhao Yang2,Yang Hui2ORCID,Zhao Jingjing2ORCID

Affiliation:

1. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243032, China

2. School of Management Science and Engineering, Anhui University of Technology, Maanshan 243032, China

Abstract

The use of laser cladding technology to prepare coatings of AlCoCrFeNi high-entropy alloy holds enormous potential for application. However, the cladding quality will have a considerable effect on the properties of the coatings. In this study, considering the complex coupling relationship between cladding quality and the process parameters, an orthogonal experimental design was employed, with laser power, scanning speed, and powder feed rate as correlation factor variables, and microhardness, dilution rate, and aspect ratio as characteristic variables. The experimental data underwent gray correlation analysis to determine the effect of various process parameters on the quality of cladding. Then, the NSGA-II algorithm was used to establish a multi-objective optimization model of process parameters. Finally, the ANSYS Workbench simulation model was employed to conduct numerical simulations on a group of optimized process parameters and analyze the change rule of the temperature field. The results demonstrate that the laser cladding coating of AlCoCrFeNi high-entropy alloy with the single pass is of high quality within the determined orthogonal experimental parameters. The powder feed rate exerts the most significant influence on microhardness, while laser power has the greatest impact on dilution rate, and scanning speed predominantly affects aspect ratio. The designed third-order polynomial nonlinear regression model exhibits a high fitting accuracy, and the NSGA-II algorithm can be used for multi-objective optimization to obtain the Pareto front solution set. The numerical simulation results demonstrate that the temperature field of AlCoCrFeNi high-entropy alloy laser cladding exhibits a “comet tail” phenomenon, where the highest temperature of the molten pool is close to 3000 °C. The temperature variations in the molten pool align with the features of laser cladding technology. This study lays the groundwork for the widespread application of laser cladding AlCoCrFeNi high-entropy alloy in surface engineering, additive manufacturing, and remanufacturing. Researchers and engineering practitioners can utilize the findings from this research to judiciously manage processing parameters based on the results of gray correlation analysis. Furthermore, the outcomes of multi-objective optimization can assist in the selection of appropriate process parameters aligned with specific application requirements. Additionally, the methodological approach adopted in this study offers valuable insights applicable to the exploration of various materials and diverse additive manufacturing techniques.

Funder

key research program of natural science research in Anhui universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3