PCDA/ZnO Organic–Inorganic Hybrid Photoanode for Efficient Photoelectrochemical Solar Water Splitting

Author:

Akhmetzhanov Nursalim1,Zhang Mao1,Lee Dongyun12,Hwang Yoon-Hwae12ORCID

Affiliation:

1. Department of Nano Fusion Technology & BK FOUR Nanoconvergence Technology Division, Pusan National University, Busan 46241, Republic of Korea

2. Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea

Abstract

In this study, we developed well-aligned ZnO nanoflowers coated with poly-10,12-pentacosadiyonic acid (p-PCDA@ZnO) and modified with Pt nanoparticle (Pt/p-PCDA@ZnO) hybrid photoanodes for highly efficient photoelectrochemical (PEC) water splitting. The scanning electron microscope (SEM) image shows that thin films of the p-PCDA layer were well coated on the ZnO nanoflowers and that Pt nanoparticles were on it. The photoelectrochemical characterizations were made under simulated solar irradiation AM 1.5. The current density of the p-PCDA@ZnO and the Pt/p- PCDA@ZnO was 0.227 mA/cm2 and 0.305 mA/cm2, respectively, and these values were three times and four times higher compared to the 0.071 mA/cm2 of the bare ZnO nanoflowers. The UV–visible spectrum showed that the absorbance of coated p-PCDA films was extended in visible light region, which agrees with the enhanced PEC data for p-PCDA@ZnO. Also, adding Pt nanoparticles on top of the films as co-catalysts enhanced the PEC performance of Pt/p-PCDA@ZnO further. This indicates that Pt/p- PCDA@ZnO has a great potential to be implemented in solar water splitting.

Funder

Pusan National University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3