Effect of Extrusion Ratio on Mechanical Behavior and Microstructure Evolution of 7003 Aluminum Alloy at High-Speed Impact

Author:

Xing Rui12,Guo Pengcheng13

Affiliation:

1. Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, China

2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

3. Research Institute of Hunan University in Chongqing, Hunan University, Chongqing 400044, China

Abstract

The extrusion ratio (ER) is one of the most important factors affecting the service performance of aluminum profiles. In this study, the influence of ER on the mechanical behavior and microstructure evolution of 7003 aluminum alloy at high-speed impact with strain rates ranging from 700 s−1 to 1100 s−1 was investigated. The studied alloy with an ER of 56 formed coarse grain rings during the heat treatment. The microstructure of the alloys with ERs of 20 and 9 is relatively uniform. The results indicate that under high-speed impact, the mechanical response behavior of the 7003-T6 alloy with different ERs is different. For the alloy with an ER of 56, strain hardening is the main mechanism of plastic deformation. In contrast, a flow stress reduction occurs at middle deformation stage for the ones with ERs of 20 and 9 due to concentrated deformation, which is more significant in the alloy with an ER of 20. Under high-speed impact, the alloy with an ER of 56 undergoes uneven plastic deformation due to the presence of coarse grain rings. The deformation is mainly borne by the region of coarse grains near the edge, and the closer to the center, the smaller the deformation. The deformation of the alloys with ERs of 20 and 9 is relatively uniform, but exhibits localized concentrated deformation in the area near the edge. The significant plastic deformation within deformation band causes a local temperature rise, resulting in a slight decrease in flow stress after the peak. These results can provide reliable data support for the application of 7003 aluminum alloy in the vehicle body crash energy absorption structure.

Funder

Natural Science Foundation of Hunan Province, China

Natural Science Foundation of Changsha, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3