Abstract
Recently, nanofluid application as a heat transfer fluid for a closed-loop solar heat collector is receiving great attention among the scientific community due to better performance. The performance of solar systems can be assessed effectively with the exergy method. The present study deals with the thermodynamic performance of the second law analysis using graphene nanoplatelets nanofluids. Second law analysis is the main tool for explaining the exergy output of thermodynamic and energy systems. The performance of the closed-loop system in terms of energy and exergy was determined by analyzing the outcome of field tests in tropical weather conditions. Moreover, three parameters of entropy generation, pumping power and Bejan number were also determined. The flowrates of 0.5, 1 and 1.5 L/min and GNP mass percentage of 0.025, 0.5, 0.075 and 0.1 wt% were used for these tests. The results showed that in a flow rate of 1.5 L/min and a concentration of 0.1 wt%, exergy and thermal efficiencies were increased to about 85.5 and 90.7%, respectively. It also found that entropy generation reduced when increasing the nanofluid concentration. The Bejan number surges up when increasing the concentration, while this number decreases with the enhancement of the volumetric flow rate. The pumping power of the nanofluid-operated system for a 0.1 wt% particle concentration at 0.5 L/min indicated 5.8% more than when pure water was used as the heat transfer fluid. Finally, this investigation reveals the perfect conditions that operate closest to the reversible limit and helps the system make the best improvement.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献