Flame Retardancy of Lightweight Sandwich Composites

Author:

Samyn FabienneORCID,Adanmenou Roland,Bourbigot Serge,Duquesne Sophie,Jimenez MaudeORCID,Van Marle Marieke,Weij Sebastiaan

Abstract

This study proposes an innovative solution to flame-retard a sandwich composite made of unsaturated polyester resin, glass fibre skins and polyester nonwoven core material. The strategy uses the core material as flame-retardant carrier, while the resin is also flame-retarded with aluminum trihydroxide (ATH). A screening of the fire-retardant performances of the core materials, covered with different types of phosphorous flame-retardant additives (phosphate, phosphinate, phosphonate), was performed using cone calorimetry. The best candidate was selected and evaluated in the sandwich panel. Great performances were obtained with ammonium polyphosphate (AP422) at 262 g/m2. The core material, when tested alone, did not ignite, and when used in the laminate, improved the fire behaviour by decreasing the peak of heat release rate (pHRR) and the total heat release (THR): the second peak in HRR observed for the references (full glass monolith and sandwich with the untreated core) was suppressed in this case. This improvement is attributed to the interaction occurring between the two FR additives, which leads to the formation of aluminophosphates, as shown using Electron Probe Micro-Analysis (EPMA), X-ray Diffraction (XRD) and solid-state 31P Nuclear Magnetic Resonance (NMR). The influence of the FR add-on on the core, as well as the ATH loading in the matrix, was studied separately to optimize the material performances in terms of smoke and heat release. The best compromise was obtained using AP422 at 182 g/m2 and 160 phr of ATH.

Publisher

MDPI AG

Subject

General Medicine

Reference19 articles.

1. EN 45545. Railway Applications-Fire Protection on Railway Vehicles-Part 2: Requirements for Fire Behavior of Materials and Component,2013

2. The synthesis and properties of a reactive flame-retardant unsaturated polyester resin from a phosphorus-containing diacid

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3